

Year 12 Mathematics Applications Test 4 2021

Calculator Assumed Time Series Data

STUDENT'S NAME

DATE: Friday 25th June

TIME: 40 minutes

MARKS: 37

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

This page has been intentionally left blank

The graph above shows the sales at a local restaurant over a 14 day period. A 3 point moving average and a 5 point moving average have been fit to the model.

- (a) On the legend in the graph clearly label the 3 point moving average and the 5 point moving average. [1]
- (b) Which moving average is most appropriate for the given data? Explain your answer.

[2]

(c) Explain the purpose of fitting a moving average to time series data. [2]

2. (5 marks)

Cirque De Moon performed a certain number of times a week for the past four weeks. The attendance data and associated moving averages for the first four weeks have been plotted below.

- (a) What moving average is most appropriate for this data? [2]
- (b) Describe the trend in attendance over these four weeks. [1]
- (c) Cirque De Moon need 1000 attendees on average per day to make their performance financially worthwhile. Should the company continue its performances into a 5th week? Explain your answer. [2]

3. (17 marks)

The table below shows the number of plastic bags purchased during the week (Mon to Fri) over a three-week period.

Week	Day	Time (<i>t</i>)	Bags (in 100s)	5 Pt MA	Cycle Mean	Seasonal Effect	Seasonally Adjusted Data		
1	Monday	1	14			26.62%	58.4		
	Tuesday	2	17			32.32%	47.8		
	Wednesday	а	22	53	b	41.83%	44.9		
	Thursday	4	120	53		228.14%	55.5		
	Friday	5	90	54		171.10%	51.4		
2	Monday	6	15	57		24.27%	62.6		
	Tuesday	7	24	59		38.83%	67.5		
	Wednesday	8	35	62		56.63%	71.4		
	Thursday	9	С	62		d	60.1		
	Friday	10	105	63		169.90%	60.0		
3	Monday	11	16	63		21.05%	66.7		
	Tuesday	12	27	е		35.53%	75.9		
	Wednesday	13	37	76	76	48.68%	75.4		
	Thursday	14	160			210.53%	74.0		
	Friday	15	140			184.21%	80.0		

(b) Complete the table showing the seasonal index for each season.

Monday	Tuesday	Wednesday	Thursday	Friday
24.0%		49.0%	216.3%	

(c) Complete the graph on the previous page by plotting the last two moving averages. [2]

(d) Show how the seasonally adjusted figure of 55.5 for Thursday week 1 was calculated. [2]

(e) Determine the least squares line using the seasonally adjusted figures.

[2]

 Using your line from part (e), estimate the number of bags that will be purchased on Wednesday of week 4.

[5]

[2]

4. (10 marks)

The quarterly seasonal index for the number of visitors to the local swimming pool for the 2^{nd} quarter of the year is 0.73.

(a) Comment on the number of visitors to the pool in the 2nd quarter of the year in relation to the average quarterly number. [2]

- (b) The number of visitors to the pool in the 2^{nd} quarter of 2019 was 21 000.
 - (i) Determine the seasonally adjusted number of visitors to the pool in this quarter.

[2]

(ii) Give an estimate for the total number of visitors to the pool in 2019. [1]

(c) The least squares line through the seasonally adjusted figures (*s*) for the quarterly visitors for 2017 to 2020 is s = 1400t + 13000 where the 1st quarter of 2017 is t = 1. Predict the number of visitors to the pool in 2nd quarter of 2025. [3]

(d) Comment on the reliability of your prediction in part (c). [2]